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Transport processes in dilute gases over the whole 
range of Knudsen numbers. 

Part 2. Ultrasonic sound waves 

By L. C .  WOODS AND H. TROUGHTON 
Mathematical Institute, Oxford University 

(Received 4 September 1979) 

I n  part 1 (Woods 1979) generalized constitutive relations for the fluid stress p and 
the heat flux q were established by mean-free-path arguments. These relations are 
expected to  hold over a wide range of Knudsen numbers K ,  but in the earlier paper, 
which presented the general theory, they were successfully tested only to  O(K2) ,  the 
order to which the Burnett constitutive equations are valid. It remains to  verify the 
general theory at much higher K values, and to  this end we have applied it to  the 
propagation of forced sound waves in a rarefied monatomic gas. 

Theories for such waves (based on the linearized Boltzmann equation) are available, 
and’there are also experimental results for the speed and attenuation of waves up to 
K values of about 10. Our theory is in good agreement with experiment in the range 
0 < K < 1.  For K > 1 we obtain close agreement with experimental values of the 
wave speed, but as wave damping in this range is largely due to  the unavoidable 
proximity of the wave transmitter - an effect not included in our calculations - we have 
found smaller values of the attenuation than obtaining in the experiments. . 

1. Introduction 
I n  a previous paper (Woods 1979; hereinafter referred to  as I) expressions were 

obtained for the pressure tensor p and heat flux vector q that  should be accurate 
regardless of the value of the Knudsen number, K .  The values of p and q at a point 
(r, t )  in the fluid were expressed in terms of integrals over contributions coming from 
each element of the fluid, permitting macroscopic scale lengths (L )  to be smaller than 
typical mean-free-paths (m.f.p.) A. Fluid dynamics is normally confined to 

K = h / L  < 1 ,  

but this constraint can be removed by generalizing the constitutive relations for p 
and q as just described. This approach has at  least some advantages over Boltzmann’s 
nonlinear integro-differential equation for the velocity distribution function f ;  for 
example i t  permits a fluid description without the need to develop a series solution, 
f = fo( 1 + K$l + K2$, + . . .) where fo is the equilibrium distribution. Difficulties with 
this series and related points were discussed in I. 

Burnett’s constitutive equations for p and q are correct to  O(K2) ,  although of little 
practical value because they are subject to much the same constraint ( K  < 1) as are 
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the Navier-Stokes equation - just slightly larger values of K are possible. In I it 
was shown that the integrals given there for p and q (and which will be used in this 
paper), when developed to O(K2),  gave formulae agreeably close to Burnett’s. Only 
one coefficient of the eleven O(K2) terms had an error exceeding 0.8 % and that was 
a nonlinear term which will play no role in the linear wave theory of this paper. This 
comparison with Burnett’s work was a first test of our more general formulae. 

For a second and more demanding test we propose here to study the propagation 
of waves of length A, such that K = A/Aw varies from zero to 10 or more. Let v be 
the wave frequency, r1 the momentum transfer collision-interval, i.e. 71 = p / p ,  where 
p is the viscosity and p the pressure, then in place of K we may adopt 

p = vrl = vp/p (1 .1)  

Of course the viscosity mentioned here is tha t  for normal ‘fluid’ conditions, namely 
when p < 1, but this imposes no restriction on the range of /3 in ( l . l ) ,  since r1 is well- 
defined for all K .  As explained in I the average m.f.p. corresponding to r1 is A, = Clrl, 
where G, is the r.m.s. speed (3RT)). 

Let us suppose that the waves are generated by the uniform oscillation of a plane 
boundary a distance 1 away from the point of interest in the fluid medium, then we 
may take v to be real and the wavenumber k = k,+ik, to be complex. A second 
Knudsen number of importance is 

s being an alternative parameter sometimes employed. Let a, be the normal sound 
speed, i.e. the speed a t  /3 Q 1, y < 1,  then we define a by 

This function defines the propagation of the ultrasonic sound waves generated by tt 
plane wall. 

In this paper we shall be content to obtain a(@, 0 ) ,  namely the value of CL a consider- 
able distance from the oscillation wall or transmitter, a choice that enables us to 
evade the difficult problem of assigning boundary conditions on the transmitter. 
Some remarks on boundary conditions appear in I. The general problem will be 
worthy of attention at a later stage if our present theory proves successful over a p -  
range containing p = 1 but much less than p = s so as to keep y small. 

Experimental results (Greenspan 1956; Meyer & Sessler 1957) are available for 
0.05 < ,!? < 100 and values of s between 5 and 11. Conflicting theories based on the 
linearized Boltzmann equation have been developed. Cercignani ( 1975) gives a general 
survey of this work, but does not resolve the main point a t  issue, namely the relative 
importance of the variables p and y for the available experimental results. Sirovich & 
Thurber (19653) argue in their defensive letter in response to severe criticisms by 
Maidanik & Fox (1965)) that the sound characteristics depend only on p. In  support 
of this, they show that even for y as large as 10, 25 % of the molecules leaving the 
transmitter will experience a collision before moving a distance 1 normal to it. Thus 
the effective y is reduced, suggesting that it may be sufficient to have /3 < s for our 
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theory to be valid. However we find this no justification for following Sirovich & 
Thurber and completely ignoring the constraint on y. Indeed we find their response to 
Maidanik & Fox’s observations unconvincing, despite the good agreement they find 
with experiment. It is clear from Buckner & Ferziger’s (1966) paper that y is an 
important variable when /J’ > 1. We shall return to this matter in $4,  when discussing 
the results from our theory. 

A final remark is that for ease in computation, we shall develop our theory for the 
special case of Maxwell’s molecules. That this introduces little error is clear from 
Sirovich & Thurber’s (1965a) study, which compares the extreme cases of rigid sphere 
and Maxwell potential models. While they find that the rigid sphere model does give 
slightly better agreement with experiment at high frequencies, the small difference in 
results between taking 8 moments and I1 moments for a given model is found to be 
comparable to the difference obtained between the models. 

2. Linearized form of the constitutive relations in non-local fluid dynamics 
We shall start by summarizing the principal results for the pressure tensor and heat 

flux vector given in part 1.  As shown in figure 1,  a typical molecule S experiences a 
collision at P‘(r‘, t ’ )  and then moves a distance R through the fluid to pass through 
the ‘target’ at Q(r, t ) ,  the point at  which p and q are to be evaluated. The thermal 
speed of S when it leaves P’ we write as c’fi, where fi is unit vector and the speed c‘ 
is assumed to have a Maxwellian distribution. Dashes indicate values a t  P‘. The 
thermal speed c and temperature T at any point are thus related by 

c = wC, C = (2kT/m)*, (2.1) 

where w is the random variable, 

4 f (0) dw = 3 w2 dw (0 < w < a). 

Anisotropy in the molecular speed of S is introduced via the gradient 

1 1 A h  

S* 5 -- V.p+wSl - V(p: RR-p) (8, = (;)*), 
P P 

where p is the fluid density andp = (k /m)  p T  is the pressure. The fluid stress is assumed 
to act impulsively on the molecule S during its collision at  P’, adding a velocity 
component p;7;55, where the subscript is used to indicate values appropriate to 
momentum transport (i = 1) or energy transport (i = 2), 7;,i = 1,2, are the mean- 
free-times for momentum and energy transport a t  P‘ and /J’; is a small nonlinear 
correction to 7; that we can ignore here. Let v = v(r, t )  and v’ = v‘(r‘, t ‘ )  be the fluid 
velocities at  Q and P‘, and let F be the body force acting on the fluid, then the velocity 
with which S approaches Q is 

A 

ui = w C ‘ R + 7 : ~ ~ + v ’ - v + S I ] F d ~ ,  (2.4) 

the integral being along X’s trajectory. For Maxwellian molecules 71 and 72 are inde- 
pendent of w .  

11-2 
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FIGURE 1 .  Particle trajectories : P ,  fluid particle molecular source ; 
Q ,  molecular target ; 8, typical molecule. 

The mean-free-paths for momentum and energy transport a t  Q(r,t) are written 
Ai, i = 1,2 ,  and for the particular case of Maxwellian molecules are given by 

where 
Ai = mi = oCri = w6iCirTi = wSihi (hi = C i ~ i  = const.), ( 2 4 t  

3kT * c, = (--) , c, = ($) tC,  (6, = ($)4 8, = (A)&) 

are the two transport speeds appropriate to the classical theory of linear constitutive 
relations. At a point a distance s from P‘ along 8’s trajectory the mean-free-paths 
are written ASi. Thus at  s = 0, ASi = A;, and a t  s = R, ASi = hi. The probability that S 
has a collision at P and (later) passes through Q is+ 

where the integral is along the trajectory. 
The fluid particle P’ that we have called the molecular ‘source’ moves to H ( i ? , t )  

during the time that S travels to the target Q ,  and since the mass p’dv’ of the fluid 
particle is unchanged, 

p’dv’ = p d v  = p d B R 2 d R  ( R  = Ir-FI), 

where 3 = p(F,  t )  and d6  is the solid angle subtended a t  Q by dp. 

volume V :  
The pressure tensor and heat flux vector are given by integrals over the whole fluid 

(2.7) 

and 
I ”  

t Equations (2.15), (2.12) and (2.26) of part 1 should have appeared as written in ( 2 4 ,  (2.6) 
and (2.8) above. In the integrand of (2.8) we could have also written ~ ( u : - w 2 & ~ C ~ )  uZy2. 
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where the bars over the integral signs indicate that the integrands are to be averaged 
over the Maxwellian (2.2). 

In  a steady, uniform state, v = 0, p = po, p = po, T = To, when (2.4) and (2.6) 
reduce to 

h e-R/hi 
ui = oC0R; 9". - 

0% - 4nR2h,' (2.9) 

To obtain the linearized forms of (2.7) and (2.8) we write the variables asp  = po+p, 
p = po+p", v = 8, C' = Co+c',  etc., and ignore quadratic terms in the perturbation 
quantities @,p", .... In the absence of a body force F (2.7) and (2.8) yield 

(2.10) 

(2.11) 

- 

q = lv pow2cg ( w 8  (el - e) + 88. (a! - B + .,9;,> Yo,&. 

A term in (2.10) containing gl vanishes because 

By (2.1) the perturbation in the thermal speed C is given by 

k 
m 
- !F = coo. 

Also note from (2.3) that 

1 

Po 

- 
9* = -- V . [ b + w S , ( p - ~ :  88) I], 

where 
p = -po!F+-PTo. k k 

m m 

(2.12) 

(2.13) 

(2.14) 

To complete the equations we need the perturbation forms of the basic conservation 
laws of fluid mechanics, namely, 

a8 
at 0 at 
g+pov.v = 0, p - +v.i;  = 0, 

and 
3 k aT 
- - p  - + p 0 V . 8 + V . G  = 0,  
2 m  O a t  

(2.15) 

(2.16) 

plus relations between the co-ordinates (r', t ' ) ,  (r, t )  and (P, t ) .  In the uniform steady 
state the relations are (see figure 1)  

h 

r' = P-RR, t - t '  = R/wCo. (2.17) 

In the oscillatory perturbations that we shall impose on this state, the source P' at 
(r', t ')  will make small oscillations about its steady state location that will make small 
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changes to (2.17) which can be ignored in a linearized theory. For example the difference 
between c(r’, t ’ )  and t?(r - Rfi ,  R/wCo) will be second order in amplitude and there- 
fore negligible. 

3. The dispersion relation for sound waves 

propagation vector k, and express all perturbation quantities in terms of 
We shall assume the existence of a plane wave with real frequency v and complex 

A 

= ei@.r-ut), x = R(k . R - v/wCo). (3.1) 

Thus by (2.17) p ( F , t )  = F*ei@5-ut) = p*(eik.RR, and 

where p*,  v* are constants. Similarly by (2.12) 

k k 
m m 

Cot!? = - T*(e- ix ,  Cot? = - T*<. 

Also = (p*, 4 = flq* and by (2 .13)  and (2.14) 

i 
P O  

$’ * -  - - - (k . p* + wSl k@* - p* : a&)} [ e-ix, 

where 

(3.2) 
k 

P* = &, (P*To+P*T*).  

We shall suppose that the wave is propagating alo:g the 02 axis and that the angle 
between unit vector fr parallel to k and the vector R is 8, as shown in figure 2. Sub- 
stituting the wave forms into (2.15) and (2.16) and eliminating k.v,, we find the 
relations 

k21X: p* = v2p*, 7 
and I 

(3.3) 

Expressions for kk: p* and k.q,  can be deduced from (2 .10 )  and (2 .11 ) ,  which yield 

p ~ + 2 i ~ , C o ( ~ , k . p ~ ) S - 2 i ~ l ~ o S , ( ~ ~ l ~  p*k)s 
- k -  ~ - 

~ 2 ~ 0  m T * W ~ K ~ + ~ P O C ~ ( W J ~ V * ) ’ -  ~ ~ T ~ C ~ S ~ P * ( W ~ J ~ ~ ) ~ + C ~ P * W ~ L ~ ,  (3.4) 

and 
k -  - 

q* = poco m T * w ~ J ~ + P ~ C ~ V * .  (w2KZ-g l )  
~ - - 

- i72Ct k .  p* w2K2 - i72CgS1~* k .  w3K2 + kp, i & M 2 ,  (3.5) 
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Y 

X 

FIGURE 2. Spherical co-ordinates. fi = f sin 0 cos 4 +j sin 0 sin 9 + k cos 0. 

where the superscript s denotes ‘symmetrical part of’, 

and the bar denotes averages as defined by 

The integrals are easily evaluated. We shall take the case of Maxwellian molecules, 
Writing x = R/h, and noting from (1 .1)’  (1.3),  (2.5) and (3.1) that for which 72 = 

(3.8) 1 x = x p ~ ( o s a c : o s e - i )  (il ~ = a  27 ’= ($)* 
71 

we have by (2.9) that 

d8 
477 

e+ go, dii = exp [ - x( 1 - cos B/b,)/h,] sin 8d8 - dx, 

and 
h d$ exp [ - ik . RR] Pol dC = exp [ - x( 1 - cos O/bO)]  sin 8 d8 - dz, 

4n 
where 

i+7i p 
(i = 1,2). (3.9) 

71 1 b =- h . =  i 
7. 9 2 -  

b =- 
7. 

O - W W ’  i -  -4 uSaP l - i ” P  
71 71 
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Let 

(3.10) 

(3.11) 

(3.12) 

Ji = -hibi#<k,  (3.13) 

&.GI = & b l { i + ( b q -  1)$1}(fP+Jr)-hlbl(Q+b2191) k&, (3.14) 

kk: M, = &h,b%{++(bi- I ) $ , } ( f P + J ^ j ) - h , b ~ ( $ + b ~ $ , )  kk. (3.15) 

(As we shall see shortly, only the components of G, and M, given here will be required.) 
To form a convenient set of scalar equations we take the products kk: and ($3 +a): 

of (3.4) and the product k. of ( 3 4 ,  then eliminate p* ,  kk: p* and &.q* from the 
resulting equations by (3.2) and (3.3). The result can be expressed as 

and 

P* 
(3.16) 

where d ,  93, . . . ,4 are the non-dimensional coefficients: 

From (3.16) it follows that these coefficients are subject to the constraint 

d9 - %9? + 227(dF--%m) + - P Y )  = 0, (3.17) 

which is therefore the required relation between a and p, i.e. the dispersion relation. 
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When /3 is small (3.17) reduces to 

which yields 
(3.18) 

results that one can easily show are in agreement with those from the Navier-Stokes 
equations for ordinary sound waves. For other values of p it is necessary to solve (3.17) 
numerically. This has been done by Mr John Cady of the Computing Methods Unit of 
the NSW Institute of Technology, Sydney. In the following section we shall compare 
the results obtained with experimental results and with conclusions obtained from 
other theories. 

4. Comparison with other theories and with experiment 
In  figures 3 and 4 are plotted a, and ax as functions of p-1. The experimental 

results shown due to Meyer & Sessler (1957) were obtained with Ar a t  s = 8.25, where 
s is the number defined in (1.2). Greenspan’s observations (with He, Ne, Ar, Kr, and 
Xe), a t  least those shown in the figure, have s > ($)*p, since he excluded results for 
which y > 1. Hence from the remarks made in the sixth paragraph of the Introduction, 
we should not expect our theory to hold much beyond /3 E 1 .  In  fact for the wave speed 
(a,/.,) we have very good agreement up to p = 100, with only Buckner & Ferziger’s 
(1966) theory closer to the experimental points. 

The increased wave speed a t  a given point P for ,8 & I is because the slower molecules 
arriving a t  P from neighbouring regions have phases varying more widely than do the 
faster molecules arriving a t  P, which means that they cannot contribute as much to 
the sound pressure as the faster molecules (Maidanik, Fox & Heck1 1965). Provided 
there are some collisions between molecules in the gas, this remark is true whether a 
transmitter is close to P or not. While the presence of a nearby transmitter will 
enhance the phase mixing a t  P of molecules of all speeds, its effect will be largely 
independent of speed because of the wide range of distances between P and points 
on the transmitter. We therefore do not expect the wave speed to depend on the close- 
ness of the transmitter, and conclude from this and figure 3 that our theory is entirely 
satisfactory as far as as is concerned. 

On the other hand, a t  first sight, our theory does not appear to have successfully 
predicted wave damping beyond p z 1. Damping a t  /3 1 is largely due to phase 
mixing, and we have just asserted that the presence of a surface W (the transmitter) 
near P will increase this mixing. If this is indeed true, then the discrepancy in figure 4 
between our theory and experiment is possibly explicable as being due to ‘wall 
damping’. Damping of waves due to particles colliding with nearby walls is not a 
new concept. Woods (1965) in studying the propagation of density waves in the 
positive column, found considerable wave damping in a collisionless plasma due to 
ions being lost to the surrounding boundaries. Of course molecules are not lost on 
striking the transmitter W ,  but assuming that diffuse reflexion occurs, the molecules 
coming from somewhere near P ,  striking W and then returning to P, will be as mixed 
in phase as possible, certainly more so than molecules coming to P from the direction 
of W were W absent. 
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P-' 
FIGURE 3. aw ws. p-'. Theory : -, Sirovich & Thurber (1  1 moments) ; - - , Sirovich & Thurber 
(8 moments) : - + -, Buckner & Ferziger ( 5  moments) ; - - -, Woods & Throughton ; - - - - -, 
Navier-Stokes. Experimental data: A, Mayer & Sessler ; 3, Greenspan. 

0'4 ' 

0.0 1 0.1 1 10 

P -' 
FIGURE 4. ax 0s. p-l. For the interpretation of the symbols see the legend t,o figure 3.  

Several authors have used Boltzmann's equation to obtain asymptotic expressions 
for a a t  large values ofp. The most accurate appears to be that given by Hanson & 
Morse (1969), who show that in the limit /3 + 00, 

a N (&)42-8(2 /3- i )d  (S = ( $ ) & p / y ) .  (4.1) 

Maidanik, Fox & Heck1 (1964) give a similar formula, but with a different coefficient. 
This expression shows that as the transmitter surface W moves away from P, the 
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damping due to phase mixing slowly declines, which supports our concept of ‘wall 
damping’. But there appears to be no published analytic solution for the limit y -+ 0,  
with which to compare our results. Sirovich & Thurber’s (1965a) calculations appear 
to be independent of the value of y ,  so presumably hold for y = 0. They claim that 
(4.1) is not appropriate to the experimental results, with which they get fair agreement, 
save that the more accurate 1 1  moments model is further from experiment than the 8 
moments model. Buckner & Femiger’s (1966) method, which does incorporate the 
value of y ,  appears t o  us to be the most reliable of those based on the linearized 
Boltzmann equation. It remains an open question whether our theory is in error for 
/3 > 1 ornot. 

One of us (L. C.  W.) was working by invitation of Dr B. S. Thornton (Head of the 
School of Mathematical Sciences) a t  the N.S.W. Institute of Technology, Sydney, 
when the substantial part of the work described above was completed. And we are 
also particularly grateful to Mr John Cady of the Institute for his numerical solution 
of our rather complicated dispersion relation, which was by no means a simple task. 
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